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ABSTRACT

In this paper, we analyze the complexity of natural parallelizations of Delaunay re�nement methods for mesh gener-
ation. The parallelizations employ a simple strategy: at each iteration, they choose a set of \independent" points to
insert into the domain, and then update the Delaunay triangulation. We show that such a set of independent points
can be constructed eÆciently in parallel and that the number of iterations needed is O(log2(L=s)), where L is the
diameter of the domain, and s is the smallest edge in the output mesh. In addition, we show that the insertion of
each independent set of points can be realized sequentially by Ruppert's method in two dimensions and Shewchuk's
in three dimensions. Therefore, our parallel Delaunay re�nement methods provide the same element quality and
mesh size guarantees as the sequential algorithms in both two and three dimensions. For quasi-uniform meshes, such
as those produced by Chew's method, we show that the number of iterations can be reduced to O(log(L=s)). To
the best of our knowledge, these are the �rst provably polylog(L=s) parallel time Delaunay meshing algorithms that
generate well-shaped meshes of size optimal to within a constant.
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1. INTRODUCTION

Delaunay re�nement is a popular and practical tech-
nique for generating well-shaped unstructured meshes
[19, 29, 34]. The �rst step of a Delaunay re�nement
algorithm is the construction of a constrained or con-
forming Delaunay triangulation of the input domain.
This initial Delaunay triangulation need not be well-
shaped. Delaunay re�nement then iteratively adds
new points to the domain to improve the quality of
the mesh and to make the mesh respect the bound-
ary of the input domain. A sequential Delaunay re-
�nement algorithm typically adds one new vertex per
iteration, although sometimes one may prefer to in-
sert more than one new vertex at each iteration. Each
new point or set of points is chosen from a set of po-
tential candidates | the circumcenters of poorly con-
ditioned simplices (to improve mesh quality) and the
diameter-centers of boundary simplices (to conform to

the domain boundary). Ruppert [29] was the �rst to
show that the proper application of Delaunay re�ne-
ment produces well-shaped meshes in two dimensions
whose size is within a small constant factor of the best
possible. Ruppert's result was then extended to three
dimensions by Shewchuk [34] and Li and Teng [19].
EÆcient sequential Delaunay re�nement software has
been developed both in two [29, 33] and three dimen-
sions [34]. Chrisochoides and Nave [9] and Okusanya
and Peraire [27] developed parallel software using De-
launay re�nement, for which they have reported good
performance. Recently, Nave et al. [26] presented a
parallel Delaunay re�nement algorithm and proved
that it produces well-shaped meshes. The complex-
ity of their algorithm as well as the size of the mesh it
outputs remains unanalyzed.

In this paper, we study the parallel complexity of a
natural parallelization of Delaunay re�nement. One of



the main ingredients of our parallel method is a notion
of independence among potential candidates for De-
launay insertion at each iteration. Our parallel Delau-
nay method performs the following steps during each
iteration.

1. Generate an independent set of points for parallel
insertion;

2. Update the Delaunay triangulation in parallel.

Our independent sets have the following properties:

� Their insertion can be realized sequentially by
Ruppert's method in 2D and Shewchuk's in 3D.
Hence, an algorithm that inserts all their points
in parallel will inherit the guarantees of Ruppert's
and Shewchuk's methods that the output mesh be
well-shaped and have size optimal up to a con-
stant.

� The independent sets can be generated eÆciently
in parallel. In addition, they are \large enough"
so that the number of parallel iterations needed is
O(log2(L=s)), where L and s are the diameter of
the domain and the smallest edge in the output
mesh, respectively.

� When a quasi-uniform mesh is desired as in
Chew's method, the number of iterations can be
reduced to O(log(L=s)).

We should emphasize here that our analysis focuses
on the number of parallel iterations of Delaunay re-
�nement. The independence of the new points do not
necessarily imply a straightforward parallel insertion
scheme at each iteration. There are several existing
parallel Delaunay triangulation algorithms that we can
employ at each iteration. For example, in 2D we can
use the divide-and-conquer parallel algorithm devel-
oped by Blelloch et al. [4] for Delaunay triangulation.
Their algorithm uses O(n log n) work and O(log3 n)
parallel time. We can alternatively use the random-
ized parallel algorithms of Reif and Sen [28], or by
Amato et al. [1], in both two and three dimensions.
Both of these randomized parallel Delaunay triangu-
lation algorithms have expected parallel running time
O(log n). Using one of these adds a logarithmic factor
to our worst-case total parallel time complexity anal-
ysis. To the best of our knowledge, these are the �rst
provably polylog(L=s) parallel time Delaunay meshing
algorithms that generate well-shaped meshes of size
optimal to within a constant.

1.1 Motivation and Related Work

This work is motivated by the observation that both
sequential and parallel implementations of Delau-
nay re�nement algorithms seem to produce the best
meshes in practice. However, improvements in the
speed of parallel numerical solvers are creating the
need for comparable speedups in meshing software:

L�ohner and Cebral [20] have reported that improve-
ments in parallel numerical solvers [37] have resulted
in the simulation time of numerous practical systems
being dominated by the meshing process.

Quadtree-based methods are an alternative to De-
launay re�nement. They also generate well-shaped
meshes whose size is within a constant factor of the
best possible [2, 24]. In practice, however, they of-
ten generate meshes larger than Delaunay re�nement
on the same input. The parallel complexity of the
quadtree-based methods is nevertheless better under-
stood.

Several parallel mesh generation algorithms have been
developed. On the theoretical extreme, Bern, Epp-
stein and Teng [3] gave a parallel O(log n) time al-
gorithm using K= log n processors to compute a well-
shaped quadtree mesh, where K is the �nal mesh size.
There is also a simple level-by-level quadtree-based
method that is used in practice [32, 36]. One can eas-
ily show that this level-by-level based method takes
O(log(L=s) + K=p) parallel time, using p processors
[36].

Building upon [3], Miller et al. [22] developed a paral-
lel sphere-packing based Delaunay meshing algorithm
that generates well-shaped Delaunay meshes of opti-
mal size in O(log n) parallel time using K= log n pro-
cessors. Their method uses a parallel maximal inde-
pendent set algorithm [21] to directly generate the set
of �nal mesh points, and then constructs the Delau-
nay mesh using parallel Delaunay triangulation. As
this algorithm has not been implemented, we do not
know how the meshes it produces will compare.

Various parallel Delaunay re�nement methods have
been implemented and been seen to have good per-
formance [9, 18, 20, 27]. These methods address some
important issues such as how to partition the domain
so as to minimize the communication cost among the
processors. Our new analysis on the number of paral-
lel iterations of Delaunay re�nement could potentially
provide provable bounds on their parallel complexity.

Our work also helps explain the performance of some
sequential implementations of Delaunay re�nement,
especially those which use a Delaunay triangulator as
a black-box. In such situations, it is often desirable to
minimize the number of calls to the black-box Delau-
nay triangulator by inserting multiple points at each
iteration. Our bounds on the number of iterations pro-
vide a bound on the number of calls to the Delaunay
triangulator.

We omit the proofs of Lemmas 8, 9, 10, 16,and 18
and Theorems 13, 14, 21, and 22 in this version
due to page limitation. A full version of the pa-
per is available at http://www.cs.duke.edu/~ungor/
abstracts/parallelDelRef.html.



2. PRELIMINARIES

2.1 Input Domain

In 2D, the input domain 
 is represented as a pla-

nar straight line graph (PSLG) [29] | a proper planar
drawing in which each edge is mapped to a straight
line segment between its two endpoints. The segments
express the boundaries of 
 and the endpoints are the
vertices of 
. The vertices and boundary segments of

 will be referred to as input features of 
. A vertex
is incident to a segment if it is one of the endpoints of
the segment. Two segments are incident if they share
a common vertex. In general, if the domain is given as
a collection of vertices only, then the boundary of its
convex hull is taken to be the boundary of the input.

Miller et al. [23] presented a natural extension of
PSLGs, called piecewise linear complexes (PLCs), to
describe domains in three and higher dimensions. In
three dimensions, the domain 
 is a collection of ver-
tices, segments, and facets where (i) all lower dimen-
sional elements on the boundary of an element in 

also belongs to 
, and (ii) if any two elements intersect,
then their intersection is a lower dimensional element
in 
. In other words, a PLC in d dimensions is a cell
complex with polyhedral cells from 0 to d dimensions.

2.2 Delaunay Triangulation

Let P be a point set in Rd. A simplex � formed by a
subset of P points is a Delaunay simplex if there exists
a circumsphere of � whose interior does not contain
any points in P . The Delaunay triangulation of P ,
denoted Del(P ), is a PLC that contains all Delaunay
simplices. If the points are in general position, that is,
if no d + 2 points in P are co-spherical, then Del(P )
is a simplicial complex.

The Delaunay triangulation of a point set can be con-
structed in O(n log n) time in 2D [10, 17, 16] and in
O(ndd=2e) time in d dimensions [10, 31]. A nice survey
of these algorithms can be found in [16].

One way to obtain a triangulation that conforms to
the boundary of a PSLG domain is to use a constrained
Delaunay triangulation. Let P be the set of vertices
of a PSLG 
. Two points p and q in P are said to
be visible from each other if the line segment pq does
not intersect the interior of any segment in 
. Three
points form a constrained Delaunay triangle if the in-
terior of their circumcircle contains no point from P
that is visible from all three points. The union of
all constrained Delaunay triangles forms a constrained
Delaunay triangulation CDT (
). Chew developed an
algorithm for computing constrained Delaunay trian-
gulations [8].

A Delaunay triangulation T of input and Steiner
points is a conforming Delaunay triangulation of a
PLC 
 if every face of 
 is a union of faces of T .

q

a

b

c

p

Figure 1. Circumcenter of triangle abc encroaches the seg-
ment pq.

In 2D, Edelsbrunner and Tan proved that O(n3) ad-
ditional points are suÆcient to generate a conforming
triangulation of a PSLG of complexity n [15]. A 2D
solution proposed by Saalfeld [30] is extended to 3D
by Murphy et al. [25] and Cohen-Steiner et al. [11].
However, it remains open whether the size of their
output is polynomial in the input size or local feature
size. The de�nition of local feature size will be given in
Section 3. When the angle between the faces of a PLC
is bounded from below, say for example by �=2, then
one can apply Delaunay re�nement to generate well-
shaped conforming triangulations whose size is close
to optimal both in two [6, 29] and three dimensions
[19].

3. 2D SEQUENTIAL DELAUNAY

REFINEMENT

In this section, we recall Ruppert's and Chew's algo-
rithms for constructing Delaunay meshes of PLSGs in
2D. Following Ruppert [29], we assume that the angle
between two adjacent input segments is at least �=2.
Boundary treatments that relax this assumption are
discussed in [29, 35].

In the process of Delaunay re�nement, one could either
maintain a constrained Delaunay triangulation, or one
just keeps track of the set of input segments that are
not respected. The �rst approach does not extend
to three dimensions because, in 3D, some PLCs do
not have a constrained Delaunay triangulation. We
therefore use the second approach.

At each iteration, we choose a new point for insertion
from a set of candidate points. There are two kinds
of candidate points: (1) the circumcenters of existing
triangles, and (2) the midpoints of existing boundary
segments.

Let the diametral circle of a segment be the circle
whose diameter is the segment. A point is said to en-

croach a segment if it is inside the segment's diametral
circle. (See Figure 1.)

At iteration i, the circumcenter of a triangle is a po-

tential candidate for insertion if the triangle is poorly
shaped. For example, in Ruppert's algorithm, a tri-
angle is considered poorly shaped if the ratio of its



circumradius to the length of its shortest side is larger

than a pre-speci�ed constant �R � p
2. Let _C(i) de-

note the set of all potential candidate circumcenters
that do not encroach any segment. Let C(i) denote

their corresponding circumcircles. Similarly, let _B(i)

denote the set of all potential candidate circumcenters
that do encroach some segment. Let B(i) denote their
corresponding circumcircles.

The midpoint of a boundary segment is a candidate

for insertion if (1) the segment is not part of the cur-
rent Delaunay triangulation, that is, its diametral cir-
cle is encroached by some existing mesh points, or (2)
its segment is encroached by a circumcenter in _B. In
the latter case, this potential circumcenter candidate

is rejected from insertion. Let _D(i)

T be all midpoint

candidates of type (1) and let _D(i)

B be all midpoint
candidates of type (2).

Algorithm 1 Sequential Delaunay Re�nement

Input: A PSLG domain 
 in R2

Let T be the Delaunay triangulation of the vertices
of 
. Let i = 0 and compute B(i), C(i), D(i)

T , and

D(i)

B ;

while C(i) [ D(i)
T [ B(i) is not empty do

Choose a point q from _C(i) [ _D(i)
T [ _D(i)

B and in-
sert q into the triangulation. If q is a midpoint
of a segment s, remove s from the segment list
and replace it with two segments from q to each
endpoint of s;
Update the Delaunay triangulation T ; i = i+ 1;

Compute _B(i)
, _C(i), _D(i)

T , and _D(i)

B .
end while

The points inserted by the Delaunay re�nement are
often called Steiner points.

If a quasi-uniform mesh, such as that produced by
Chew's method, is desired [6], then we use the fol-
lowing notion of poorly shaped triangle: A triangle
is poorly-shaped if the ratio of its circumradius to the
length of the shortest edge in the current Delaunay
triangulation T is more than a pre-speci�ed constant
�C � p

2.

Figure 2 shows the output of the Delaunay re�nement
illustrating the di�erence between Chew's and Rup-
pert's re�nement. We call these two variants of the
Delaunay re�nement algorithm Chew's algorithm and
Ruppert's algorithm.

In their original papers [6, 29], Chew and Ruppert pre-
sented their Delaunay re�nement algorithms as partic-
ular variations of Algorithm 1 |they speci�ed how to
choose the next point at each iteration from the set of
candidates. In this paper, we will consider the follow-
ing variation of Algorithm 1 which is more aggressive

(a)

(b)

Figure 2. The output of (a) Chew's and (b) Ruppert's algo-
rithm on the same input. Both of these meshes have minimum
angle > 29Æ. The �rst mesh has 2246 and the second has 131
elements.

in adding boundary points | we choose this variation
to parallelize because its analysis is relatively simpler
to present.

In this variation, B(i), C(i), and D(i)
T are the same as in

Algorithm 1. The set D(i)

B is built incrementally. At

iteration i, we compute B(i) �rst and let D(i) be the
set of diametral circles that are encroached by some
circumcenters of B(i). We then setD(i)

B = D(i�1)

B [D(i).

In other words, if a segment is encroached by a circum-
center of a poorly-shaped Delaunay triangle, its mid-
point will be added to the set of candidate midpoints
and remains candidate thereafter. This is in contrast
with Algorithm 1, in which an encroached midpoint is
added to the set of candidate midpoints only for the
next iteration. If another candidate is chosen that is
in a circumcircle whose center encroaches the segment,
the circumcircle will no longer be in the Delaunay tri-



angulation at the end of the iteration, and hence the
segment might not be encroached in the triangulation
at the end of the iteration. So, its midpoint might not
be a candidate in future iterations.

Assuming that the angle between two adjacent input
segments is at least �=2, Chew's algorithm terminates
with well-shaped quasi-uniform meshes, while Rup-
pert's algorithm [29] terminates with a well-shaped
Delaunay mesh of the input domain whose elements
adapt to the local geometry of the domain. The
number of triangles in the mesh generated by Rup-
pert's algorithm is asymptotically optimal up to a con-
stant. The proofs of Ruppert's and Chew's [6, 29] that
their algorithms terminate with a well-shaped mesh of
size within a constant factor of optimal can be eas-
ily extended to our variation of Algorithm 1 discussed
above. We refer interested readers to [29] and [35].
Here we give a high level argument and introduce an
important concept that will be used in Section 4.2.3
for preprocessing an input domain in parallel.

Given a domain 
, the local feature size of each point
x in 
, denoted by lfs
(x), is the radius of the small-
est disk centered at x that touches two non-incident
input features. Ruppert showed that every Delaunay
triangle in the �nal mesh is well-shaped and that the
length of the longest edge in each Delaunay triangle
is within a constant factor of lfs
(x) for each x in the
interior of the triangle.

Suppose M is a mesh generated by our variation of
Algorithm 1. Let 
0 be the domain obtained from 

by adding to 
 all mesh points in M that are on the
boundary segments of 
. Then we can show (i) for all
x in 
, lfs
(x) and lfs
0(x) are within a small constant
factor of each other; and (ii)M can be obtained by ap-
plying Ruppert's (or Chew's) variations of Algorithm
1 to 
0. Therefore, the mesh produced by our varia-
tion of Algorithm 1 has size within a small constant
factor of the one generated by Ruppert's (or Chew's)
re�nement method.

4. PARALLEL 2D DELAUNAY

REFINEMENT

To better illustrate our analysis of parallel Delaunay
re�nement, we �rst focus on the case in which the
input is a periodic point set (PPS) as introduced by
Cheng et al. [5]. See also [12]. We will then extend our
results to produce boundary conforming meshes when
the input domain is a PSLG.

4.1 Input Domain: Periodic Point Sets

If P is a �nite set of points in the half open unit square
[0; 1)2 and Z2 is the two dimensional integer grid, then
S = P + Z2 is a periodic point set [12]. The periodic
set S contains all points p + v, where p 2 P and v

(a) (b)

Figure 3. Circumcenters of bad triangles (shaded) are in con-
ict. (a) they are too close to each other; (b) they are not too
close but can not be both inserted by a sequential algorithm.

is an integer vector. The Delaunay triangulation of a
periodic point set is also periodic.

As P is contained in the unit square, the diameter of
P is L � p

2. When we refer to the diameter of a
periodic point set, we will mean the diameter of P .

4.1.1 A generic parallel algorithm (PPS)

For a periodic point set, the only candidates for inser-
tion are the circumcenters of poorly shaped triangles.
We need a rule for choosing a large subset of the can-
didates with the property that a sequential Delaunay
re�nement algorithm would insert each of the points
in the subset. Our rule is derived from the following
notion of independence among candidates.

De�nition 1 (Independence). Two circumcenters
_c and _c0 (and also the corresponding circles c and c0)
are conicting if both c and c0 contain each other's
center. Otherwise, _c and _c0 (respectively c and c0) are
said to be independent.

If two candidates conict, at most one of them can be
inserted. Our rule is to insert a maximal independent
set (MIS) of candidates at each iteration. We will
show that if an algorithm follows this rule, then it will
terminate after a polylogarithmic number of rounds.

Algorithm 2 Generic Parallel Delaunay Re�nement

Input: A periodic point set P in R2

Let T be the Delaunay triangulation of P
Compute _C, the set of all candidate circumcenters
in T
while _C is not empty do
Let I be an independent subset of _C
Insert all the points in I in parallel
Update T and _C

end while

In the next few subsections, we will discuss how to
generate the independent sets used by the algorithm.
But �rst, we prove that regardless of how one chooses
the independent set, our parallel algorithm can be se-
quentialized. This implies that the algorithm inher-
its the guarantee of its sequential counterpart that it



generates a well-shaped mesh of size that is within a
constant factor of optimal.

Theorem 2. Suppose M is a mesh produced by an
execution of the Generic Parallel Delaunay Re�nement
algorithm. Then M can be obtained by some execu-
tion of one of the sequential Delaunay re�nement al-
gorithms discussed in Section 3.

Proof: Let I1; I2; : : : ; Ik be the sets of vertices in-
serted by the parallel algorithm above at iterations
1; : : : ; k, respectively. We describe a sequential execu-
tion that inserts all the points in Ii before any point
of Ij for i < j. For each independent set Ii, we insert
the candidates according to their circumradius in the
order from largest to smallest. For any two circum-
centers _a; _b 2 Ii, assume that the radius of a is larger
than the radius of b. This implies that _a can not be
in the circumcircle of _b, because _a and _b are indepen-
dent. Therefore, the insertion of _a will not eliminate
the triangle of _b.

Furthermore, observe that in any sequential execution,
the insertion of point _p 2 Ii can not eliminate the
triangle corresponding to _q 2 Ij for any i < j, for
otherwise, _q would not exist in the jth iteration of the
parallel execution.

Therefore, the parallel and sequential executions ter-
minate with the same Delaunay mesh. �

To minimize the number of iterations, intuitively, we
should choose a maximal independent set of candi-
dates at each iteration. In Section 4.1.3, we will give
a geometric algorithm that computes a maximal inde-
pendent set of candidates eÆciently in parallel. Our
algorithm makes use of the following observation.

Lemma 3. Suppose ca and cb are two conicting cir-
cumcircles at iteration i, and let ra and rb be their
circumradii. Then rb=2 < ra < 2rb.

c

��
��
��
��

����

ca

cb ca

b

Figure 5. The larger of two conicting circumcenters can be
at most twice as large as the smaller.

Proof: Circumcircle ca contains _cb. (See Figure 5).
As some point on ca lies outside cb, the diameter of ca
is greater than the radius of cb. Thus, ra > rb=2. A
symmetric argument implies 2rb > ra. �

4.1.2 Parallelizing Chew's Re�nement (PPS)

In this section, we show that our parallel implemen-
tation of Chew's re�nement only needs O(log(L=s))
iterations. The basic argument is very simple | we
will show that the radius of the largest Delaunay circle
reduces by a factor of 3/4 after some constant num-
ber (e.g., 98) of iterations. Because the largest cir-
cumradius initially is O(L) and the largest circumra-
dius in the �nal mesh is 
(s), the iteration bound of
O(log(L=s)) follows immediately.

Lemma 4. For all i, let ri be the largest circumradius
of a triangle in the Delaunay triangulation at the end
of iteration i. For all k � 98, rk � 3rk�98=4.

Proof: We assume by way of contradiction that rk >
3rk�98=4. Let i = k � 98. Let ck be a circumcircle
with radius rk after iteration k. Let _ck be the center
of ck.

For j � k, it is clear that ck is also an empty circle in
iteration j, because the re�nement process only adds
new points. But, ck might not be a circumcircle at
iteration j. We now show that for each iteration j,
where i � j � k, there exists a circumcircle c0j with
center _c0j , and radius r

0
j such that (1) jj _c0j� _ckjj � 3ri=4

and (2) r0j � 3ri=4.

Let pk, qk and tk be the vertices of the Delaunay tri-
angle at iteration k that de�nes ck. (See Figure 4 (a)).
We will alter ck in three stages to produce a suitable
c0j that is the circumcircle of three points that exist at
stage j: pj , qj and tj .

i. Dilate ck until it touches a mesh point pj (Figure
4 (b)). Note that pj might well be pk, qk, or tk,
so, ck might not actually expand at all during this
step.

ii. Grow the circle by moving its center away from pj

along the ray
��!
pj _ck, and maintaining the property

that pj lies on the boundary of the circle, until it
touches a mesh point qj (Figure 4 (c)).

iii. Continue to grow the circle, maintaining its con-
tact with pj and qj , moving its center away from
the chord pjqj , until it touches a vertex tj (Figure
4 (d)).

The resulting circle c0j is a circumcircle of a Delau-
nay triangle pjqjtj at iteration j. Moreover, pjqjtj is
a poorly-shaped triangle because its circumradius r0j
is at least rk. Thus, its center _c0j is a candidate at
iteration j. Note also that r0j � rk � 3ri=4.

Consider the triangle pj _ck _c
0
j , which is non-acute at ver-

tex _ck. Let x = j _ckpj j and y = j _ck _c0j j. Since j\ _c0j _ckpj j
is non-acute (r0j)

2 � x2 + y2. As r0j is the radius of a
Delaunay triangle and j � i, r0j � ri. Combining this
fact with x � rk > 3ri=4, we �nd r0j < x+ ri=4. So we
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Figure 4. Dilate the largest Delaunay circle of iteration k (a) until it touches a vertex pj existed in iteration j (b). Grow the circle
further so that it touches two more vertices qj and tj existed in iteration j ((c) and (d)).

can write, (x+ri=4)
2 � x2+y2. By simplifying this in-

equality to xri=2+r2i =16 � y2 and substituting x � ri,
we derive 9r2i =16 � y2. Hence, y = jj _c0j � _ckjj � 3ri=4.

Because c0j is empty at the end of iteration j, we know
_c0j was not chosen during iteration j. Because the in-
dependent set of candidates that we select is maximal,
there must be another circumcircle c00j chosen in itera-
tion j that conicts with c0j . By Lemma 3, the radius
of c00j is at least one half of the radius of c0j , and so is
at least jr0j j=2 � 3ri=8. Moreover, the radius of c00j is
at most r0j and hence at most ri. So jj _c00j � _c0j jj � ri.
Hence,

jj _c00j � _ckjj � jj _c00j � _c0j jj+ jj _c0j� _ckjj � ri+3ri=4 � 7ri=4:

i

r i

r3   
/4

kc

Figure 6. Packing non-overlapping disks (dashed) with radius
3ri=16 and centers located inside the shaded region.

Let _C00 = f _c00i+1; _c
00
i+2; : : : ; _c

00
j ; : : : ; _c

00
kg, and let C00 be

the corresponding set of circumcircles. As _c00l is in-
serted during round l for each l, each circle c00j 2 C00

is empty of all the centers _c00l for l < j. So the
centers in _C00 are pairwise at least 3ri=8 away from
each other. Thus, one can draw disjoint circles of ra-
dius 3ri=8 around each of these points. The annu-
lus containing these disjoint circles has area at most

�(7=4 + 3=16)2r2i � �(3=4 � 3=16)2r2i . See Figure 6.
So, one can pack at most

�
�[(7=4 + 3=16)2 � (3=4� 3=16)2]r2i

�(3=16)2r2i

�
= 97

disjoint circles of radius 3ri=16 in this region. This
implies jC00j = k � i � 97, a contradiction. �

Theorem 5. Our parallel implementation of Chew's

re�nement algorithm takes at most 98
l
log4=3(L=s)

m
iterations.

4.1.3 Parallel Computation of MIS

One can use the parallel maximal independent set al-
gorithm of Luby [21] to compute a parallel indepen-
dent set of candidates for each iteration in O(log2 n)
parallel time. In this section, we will explain how we
can exploit the geometric structure of the indepen-
dence relation to compute a maximal independent set
in a constant parallel time.

We will make extensive use of the result of Lemma
3 that two circumcircles are conicting at iteration j
only if their radii are within a factor of 2 of each other.

Lemma 6. At iteration j, if there are nj circumcir-
cles, then a maximal independent set of candidates
for Delaunay re�nement can be computed in constant
parallel time using nj processors.

Proof: Let Cj
h be the set of circumcircles of radius

more than L=2h+1 and less than or equal to L=2h,
where h ranges from 0 to log(L=sj) and sj is the small-
est circumradius at iteration j. Note that a circum-
circle in Cj

h does not conict with any circumcircle in
Cj
l if l > h+ 1.

To compute a maximal set of non-conicting candi-
dates, we �rst in parallel �nd a maximal independent
sets of circumcircles in Cj

h, independently for all even
h. We will show below that a maximal independent



set of circumcircles in Cj
h can be computed in constant

time in parallel. Let Ijeven be the set of independent
circumcircles computed. Then in one parallel step, we
can eliminate all conicting circumcircles in [h:oddCj

h.
We then compute a maximal independent set for re-
maining circumcircles in Cj

h for all odd h. Let this set
be Ijodd. Then Ijeven [ Ijodd is a maximal independent
set of circumcircles for iteration j.

Note that all circumcircles in Cj
h have radius between

L=2h+1 and L=2h. If we divide the square containing
all circumcenters into a 2h-by-2h grid, then any cir-
cumcenter that is conict with a circumcenter in the
grid box (x; y) must lie either in grid box (x; y) or one
of its eight grid neighbors.

We color grid boxes (x; y) with color (x mod 3; y
mod 3). We then cycle through the 9 color classes
and, by a method we will explain momentarily, �nd
a maximal independent set of the candidates in each
grid-box of the current color in parallel. We then elim-
inate in parallel the conicting circumcenters that are
in the color classes that have not yet been processed.

Finally, we explain how to compute a maximal inde-
pendent set among the candidates that lie in a given
grid-box. First notice that any maximal independent
set of candidates in a grid-box can have at most a
constant number of members, and hence a maximal
independent set can be found by a constant number
of parallel selection-elimination operations: choose a
center that has not been eliminated, and in parallel
eliminate any centers with which it conicts.

In a parallel system that supports primitives such
fetch and add, test and set, or parallel scan, we can
use such a primitive to select in constant time a can-
didate in a grid box. The processor that holds this
candidate becomes a \leader" in that round and broad-
casts its candidate so that the conicting candidates
can be eliminated. With these primitives, our algo-
rithm can be implemented in parallel constant time.
However, if the parallel system does not support these
primitives, then for each grid cell we can emulate par-
allel scan to select a leader in O(log n) time, where n
is the number of candidate centers in the cell.

In general, many grid cells are empty and there is no
need to generate them at all. We can use hashing
to select grid cells that are not empty. The idea is
very simple, each candidate center can compute the
coordinates of its grid cell from the coordinates of its
center and its radius. We can hash grid cells using
their coordinates and therefore, all candidate centers
belonging to a grid cell can independently generate
the hash identity of the cell. We can then use parallel
primitives discussed in the paragraph above to sup-
port the computation of a maximal independent set of
candidates for all non-empty grid cells. �

4.1.4 Parallelizing Ruppert's Re�nement (PPS)

In this section, we show that our parallelization of
Ruppert's method for periodic point sets in 2D takes
O(log2(L=s)) iterations. For simplicity, we give an
analysis for the case �R =

p
2, although our analysis

can be easily extended to the case when �R = 1 + �,
for any � > 0. We recall that �R is the threshold of
the ratio of the circumradius to shortest edge-length
de�ning a poorly shaped triangle. Thus, for �R =

p
2,

inserting the circumcenter of a poorly shaped trian-
gle whose shortest edge is h introduces new Delaunay
edges of length at least

p
2h.

Algorithm 3 Parallel Ruppert's Re�nement

Input: A periodic point set P in R2

Let T be the Delaunay triangulation of P
for i=1 to dlogp2(L=s)e do
Let _C be the set of all circumcenters of poorly-
shaped triangles who are in class E i
while _C is not empty do
Let I be a maximal independent subset of _C
Insert all the points in I in parallel
Update the Delaunay triangulation and _C

end while
end for

Let s be the length of the shortest edge in the initial
Delaunay triangulation. At each iteration, we assign

an edge to class Ei if its length is in
hp

2
i�1

s;
p
2
i
s
�
.

Similarly, we assign a Delaunay triangle to Ei if its

shortest edge has length in
hp

2
i�1

s;
p
2
i
s
�
. There

are at most dlogp2(L=s)e of such classes. Using this
de�nition, we can state and analyze the Parallel Rup-
pert's Re�nement Algorithm.

Theorem 7. Given a periodic point set in 2D of di-
ameter L, the Parallel Ruppert's Re�nement Algo-
rithm takes O(log2(L=s)) iterations.

Proof: Lemmas 8 and 9 prove that after the ith itera-
tion of the outer loop, each Delaunay triangle touching
an edge in class Ei will be well-shaped, and succes-
sive iterations cannot degrade the shape of the Delau-
nay triangles touching that edge. Lemma 10 implies
that during each iteration of the outer loop, the inner
loop of the algorithm will execute at most O(log(L=s))
times. As the outer loop is executed O(log(L=s))
times, the whole algorithm takes at most O(log2(L=s))
iterations. �

Lemma 8. During the ith iteration of the outer loop
of the Parallel Ruppert's Re�nement Algorithm, no
Delaunay edges are added to or removed from class
Ei.
Lemma 9. Suppose e is an edge in Ej where j � i.
Then during the ith outer loop, the radius-edge ratio
of triangles containing e does not increase.



Lemma 10. Let e 2 Ei, and let rl be the radius of
the larger of the two circumcircles containing e at the
end of the lth iteration of the inner loop during the
ith iteration of the outer loop. Then, at the end of
iteration k = l + 81 of the inner loop, either (1) both
Delaunay triangles containing e are well-shaped, or (2)
rk � 3rl=4 where rk is the radius of the larger of the
two circumcircles containing e after iteration k.

4.2 Input Domain: PSLG

In this subsection, we extend our parallel algorithm
for generating a Delaunay mesh from a domain given
by a periodic point set to a domain de�ned by a pla-
nar straight-line graph. Following Ruppert, we assume
that the angle between two adjacent input segments
is at least �=2. A key step in Delaunay re�nement
for a domain speci�ed by a PSLG is to properly add
points to the boundary segments so that the Delaunay
mesh is conforming to the boundary. In our parallel
algorithm, we make our mesh conform to the bound-
ary in two steps: First, we give, in Section 4.2.3, an
O(logL=s) time parallel preprocessing algorithm to in-
sert points to input segments so that the initial De-
launay mesh is conforming to the boundary and no di-
ametral circle intersects any other non-incident input
features. Second when a segment is encroached during
parallel Delaunay re�nement, we include its midpoint
as candidate for insertion.

The preprocessing step might not be needed to imple-
ment our parallel algorithm: one could probably add
points to the boundary as needed. However, the pre-
processing step simpli�es our analysis in this Section
by greatly reducing the number of cases in the analy-
sis.

4.2.1 A generic parallel algorithm (PSLG)

After applying the preprocessing step, the initial De-
launay triangulation is conforming to the boundary
and no diameter circle contains any point of the trian-
gulation. We will maintain this invariant in our algo-
rithm.

In order to perform parallel re�nement, as in Sec-
tion 4.1.1, we need a rule of independence among can-
didates for re�ning boundary segments and poorly
shaped triangles. We �rst recall the set of candidates
for insertion de�ned in Section 3.

Let B be the set of circumcircles of poorly shaped tri-
angles whose centers _B encroach some boundary seg-
ments. Let C be the set of circumcircles of poorly
shaped triangles whose centers _C don't encroach any
boundary segments. Let D be the set of diametral
circles that are encroached by some centers in _B. So,
_C [ _D are candidate points for insertion.

We will still apply De�nition 1 to determine whether
two circumcenters from _C are independent. Because

the angle between two adjacent input segments is at
least �=2, after preprocessing, any two diametral cir-
cles from _D are not overlapping. Every two diametral
centers from _B are independent.

We will use the following de�nition of independence
between a diametral center in _D and a circumcenter
in _C. Note that because a circumcenter in _C does not
encroach any boundary segment, a diametral circle of
D does not contain any center in _C.
De�nition 11. A circumcenter _c 2 _C and a diametral
center _d 2 _D are conicting if (i) _d is inside c; and (ii)
the radius of c is smaller than

p
2 times the radius of

d. Otherwise, _c and _d (also c and d) are independent.

This de�nition of independence is motivated by the
following lemma �rst proved by Ruppert [29].

Lemma 12. If a circumcircle c of radius rc en-
croaches a diametral circle d of radius rd, then rd �
rc=

p
2.

Algorithm 4 Generic Parallel Delaunay Re�nement

Input: A domain 
 given by a PSLG in R2

Apply the parallel preprocessing algorithm of Sec-
tion 4.2.3
Let T be the initial Delaunay triangulation.
Compute _BC, an independent subset of _B [ _C
Let _D be the set of centers of diametral circles en-
croached by the centers in _BC
while ( _BC \ _C) [ _D is not empty do
Let I be an independent subset of ( _BC \ _C) [ _D
Insert all the points in I in parallel
Update the Delaunay triangulation
Update _B, _C, _BC and _D

end while

The following theorem extends Theorem 2 for domains
given by PSLGs.

Theorem 13. For a domain 
 speci�ed by a PSLG,
suppose M is a mesh produced by an execution of the
parallel algorithm above. Then M can be obtained
by some execution of one of the sequential Delaunay
re�nement algorithms discussed in Section 3.

4.2.2 Parallelizing Chew's Re�nement (PSLG)

To parallelize Chew's algorithm for domain de�ned by
a PSLG, we apply Algorithm 4 and use a maximal in-
dependent set of the candidates at each iteration. In
addition, because each pair of diametral centers in _D is
independent, we include all centers _D in the indepen-
dent set. The parallel algorithm of Section 4.1.3 can
be used to construct the maximal independent set.

Theorem 14. Our parallel implementation of
Chew's re�nement algorithm takes O(log(L=s))



iterations for a domain given by a PSLG, where L is
the diameter of the domain and s is smallest local
feature size.

4.2.3 Parallel Preprocessing

In the algorithm and proof presented in the last sub-
section, we assume that the boundary of the domain
has been preprocessed to satisfy the following prop-
erty.

De�nition 15 (Strongly Conforming). A do-
main 
 speci�ed by a PSLG is strongly conforming if
no diametral circle contains any vertex or intersects
any other non-incident input features.

Clearly, if 
 is strongly conforming, then the Delaunay
triangulation of the vertices of 
 is conforming to 
.

We will use the following parallel method to prepro-
cess a domain 
 to make it strongly conforming. This
method repeatedly adds midpoints to boundary seg-
ments whose diametral circles intersect non-incident
input features.

Algorithm 5 Parallel Boundary Preprocessing

Input: A PSLG domain 
 in R2

Let G be the set of segments in 
 whose diametral
circles intersect non-incident input features.
while G is not empty do
Split all the segments in G in parallel by midpoint
insertion and update G.

end while

Lemma 16. Parallel Boundary Preprocessing termi-
nates in O(log(L=s)) iterations.

In the scheme above, we can grow a quadtree level
by level to support the query of whether the diame-
tral circle of a segment intersects another non-incident
feature. The number of levels of the quadtree that we
need to grow is at most log(L=s). As shown in [2, 3],
one can use balanced quadtree to approximate local
feature size function of 
 to within a constant factor.
Therefore, using a balanced quadtree as [2, 3], we can
preprocess the domain in log(L=s) parallel time so that
the preprocessed domain is strongly feature conform-

ing as de�ned below.

De�nition 17 (Strongly Feature Conforming).
Let � � 2 be a constant. A domain 
 speci�ed by a
PSLG is strongly feature conforming with parameter
� if it is strongly conforming, and in addition, the
length of each segment is no more than � times the
local feature size of its midpoint.

In the next subsection, we will present a parallel im-
plementation of Ruppert's algorithm for domains that
are strongly feature conforming and show that it ter-
minates in O(log2(L=s)) iterations.

We use the following lemma to show that the size op-
timality of our results are not a�ected much by the
preprocessing.

Lemma 18. Let 
 and 
0 denote the input before
and after preprocessing, respectively. Then, for any
point x in these domains, lfs
(x)=3 � lfs
0(x) �
lfs
(x).

4.2.4 Parallelizing Ruppert's Re�nement (PSLG)

In this section, we show that our parallelization of
Ruppert's method for a domain given by a PSLG takes
O(log2(L=s)) iterations. Again, for simplicity, we will
only give an analysis for the case when �R =

p
2.

The parallel algorithm follows basic steps of the paral-
lel Ruppert's Re�nement presented earlier in Section
4.1.4. But �rst, we apply the parallel preprocessing
algorithm of Section 4.2.3 so that the preprocessed do-
main is strongly feature conforming. So below we can
assume that 
 is strongly conforming.

Let s be smallest local feature of 
. At each it-
eration, we assign an edge to class Ei if its length

is in
hp

2
i�1

s;
p
2
i
s
�
. Similarly, we assign a Delau-

nay triangle to Ei if its shortest edge has length inhp
2
i�1

s;
p
2
i
s
�
. There are at most dlogp2(L=s)e of

such classes.

Algorithm 6 Parallel Ruppert's Re�nement

Input: A domain 
 given by a PSLG that is strongly
feature conforming.
Let T be the initial Delaunay triangulation.
for i=1 to dlogp2(L=s)e do
Let _B be encroaching candidate circumcenters
and _C be the non-encroaching candidate circum-
centers whose triangles is in class Ei.
Compute _BC, an independent subset of _B [ _C.
Let _D be the set of centers of diametral circles
encroached by the centers in _BC
while (BC \ C) [ D is not empty do
Let I be an maximal independent subset of
( _BC \ _C) [ _D
Insert all the points in I in parallel
Update the Delaunay triangulation
Update _B, _C, _BC and _D

end while
end for

Theorem 19. Given a domain speci�ed by a PSLG,
the Parallel Ruppert's Re�nement Algorithm takes
O(log2(L=s)) iterations.

The proof of Theorem 19 is essentially the same as
the proof of Theorem 7 where we need to address the
following two issues.



1. The center of a circumcircle could potentially en-
croach a boundary segment whose length is much
larger than the circumradius.

2. The insertion of a midpoint on the boundary
could potentially introduce smaller edges.

To address the �rst issue, we apply parallel process-
ing algorithm of Section 4.2.3 and hence assume 
 is
strongly feature conforming. Hence if a circumcenter
encroaches a boundary segment, the circumradius and
the length of the segment are within a constant fac-
tor of each other. In addition, because each boundary
segment can only be split at most a constant times in
the re�nement, it can not introduce smaller edges too
many times.

5. 3D DELAUNAY REFINEMENT

A 3D domain is speci�ed by a PLC (see Section 2.1).
In this section, we assume that the angle between any
two intersecting elements, when one is not contained
in the other, is at least 90Æ. There are three kinds
of spheres associated with a 3D Delaunay mesh that
we are interested: the circumspheres, the diametral
spheres, and the equatorial sphere given below.

De�nition 20. The equatorial sphere of a triangle in
3D is the smallest sphere that passes through its ver-
tices. A triangular subfacet of a PLC is encroached if
the equatorial sphere is not empty.

Chew's algorithm extends naturally to 3D. In [34],
Shewchuk developed a 3D extension of Ruppert's al-
gorithm. In Shewchuk's re�nement, given below, a
tetrahedron is bad if the ratio of its circumradius to
its shortest edge, referred as the radius-edge ratio, is
more than a pre-speci�ed constant �S � 2.

Algorithm 7 3D Delaunay Re�nement

Input: A PLC domain 
 in R3

Compute T , the Delaunay triangulation of the
points of 

Let _C be the set of non-encroaching circumcenters
of the bad tetrahedra
Let _D be the set of non-encroaching equatorial cen-
ters of the encroached triangular subfacets
Let _E be the set of diametral centers of the en-
croached subsegments.
while there is center a in _C [ _D [ _E is not empty
do
Insert a and update the Delaunay triangulation
Update _C, _D, and _E

end while

5.1 Parallel 3D Delaunay Re�nement

In this subsection, we show that our results for a do-
main given by a periodic point set can be extended

from two dimensions to three dimensions to parallelize
both Chew's and Shewchuk's algorithm. So far, we
have not completed the analysis for domains speci�ed
by PLCs, although we think similar results can be ob-
tained.

The following is a parallel Delaunay re�nement algo-
rithm for domains speci�ed by 3D periodic point sets.

Algorithm 8 Generic Parallel 3D Delaunay Re�ne-
ment

Input: A periodic point set P in R3

Let T be the Delaunay triangulation of P
Compute _C, the set of circumcenters of bad tetrahe-
dra in T
while _C is not empty do
Let I be an independent subset of _C
Insert all the points in I in parallel
Update T and _C

end while

The following theorem is analogous to Theorem 2. Its
proof uses a straight-forward extension of Lemma 3.

Theorem 21. Suppose M is a mesh produced by an
execution of the Generic Parallel 3D Delaunay Re�ne-
ment algorithm. Then M can be obtained by some
execution of the sequential Delaunay re�nement algo-
rithm.

To parallelize Chew's 3D re�nement, we use a maxi-

mal independent set of candidate centers in Algorithm
8. With almost the same proof as we have presented
in Section 4.1.2, we can show that the number of iter-

ations needed is at most 1077
l
log4=3(L=s)

m
.

5.1.1 Parallelizing Shewchuk's Re�nement

Our parallel implementation of Shewchuk's algorithm
is analogous to our parallel implementation of Rup-
pert's algorithm. We assign a Delaunay tetrahe-
dron to class Ei if its shortest edge has length inhp

2
i�1

s;
p
2
i
s
�
. Then, we consider the classes in as-

cending order of indices. For each class, we repetitively
insert a maximal independent set of circumcenters of
bad tetrahedra until no bad tetrahedron is left in it.

Our analysis of parallel Shewchuk's re�nement is also
analogous to the analysis of parallel Ruppert's re�ne-
ment. Slightly modifying the proof of Lemma 10, we
can show that all the bad tetrahedra in each edge class

is removed in at most 1588
l
log4=3(L=s)

m
iterations.

This leads to the following theorem.

Theorem 22. For a given periodic point set P in
R
3 of diameter at most L, if the length of the short-

est edge in the mesh generated by Shewchuk's re�ne-
ment is s, then parallel Shewchuk's re�nement takes
O(log2(L=s)) iterations to generate a bounded radius-
edge ratio mesh.



6. DISCUSSION

Polylogarithmic upper bounds on the number of paral-
lel iterations presented in Sections 4 and 5 constitutes
the main component of the analyses of our parallel al-
gorithms. At each iteration, our algorithms perform
two main operations: i) compute a maximal indepen-
dent set of points for parallel insertion; ii) update the
Delaunay triangulation inserting all these points. For
the �rst one, we proposed a new constant time parallel
algorithm. For the second, we suggested to use an ex-
isting logarithmic time parallel Delaunay triangulation
algorithm. These immediately imply polylogarithmic
total time complexity for our parallel Delaunay re�ne-
ment algorithms.

We opted for simplicity in our analyses. So, the con-
stants in lemmas 4 and 10 are probably not optimal
and likely to be much smaller in practice than 98 and
81.

The 3D extension of Chew's and Shewchuk's algo-
rithms do not always guarantee that the resulting
mesh has an aspect-ratio bounded by a constant. How-
ever, they both guarantee a constant bound on the
ratio of the circumradius to the length of the short-
est edge (the radius-edge ratio) of any tetrahedra in
the �nal mesh. So, the meshes these two algorithms
generate might potentially contains slivers, which are
elements with close to zero aspect-ratio but with a con-
stant radius-edge ratio. Several quality enhancing and
guaranteeing meshing algorithms [5, 7, 14, 19] have
been developed recently. Cheng et al. [5] and Edels-
brunner et al. [14] have already given parallel complex-
ity of their sliver removal algorithms. Our framework
can be used to analyze parallel complexity of the other
two algorithms, by Chew [7] and Li and Teng [19].

We conclude the paper with two conjectures.

� There is a parallel implementation of Ruppert's
[29] and Shewchuk's [34] algorithm that runs in
O(log(L=s)) iterations.

� There is a parallel Ruppert's [29] and Shewchuk's
[34] algorithm that runs in O(log n) time where
n is the input complexity. Notice that Bern et

al. [3] showed that the quadtree algorithm can be
implemented in O(log n) time with K processors.

We would also like to see results that establish the par-
allel complexity of other mesh generation algorithms
such as sink insertion [13].
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